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Attenuation of strong ground motion from the
Saguenay, Quebec earthquake of November 25, 1988

Paul G. Somerville'

ABSTRACT

The November 25, 1988 Saguenay earthquake, which occurred at the unusually deep focal
depth of 29 km and had a moment magnitude of 5.8, produced by far the largest set of strong
motion recordings of any earthquake 1n eastern North America. The attenuation of recorded strong
ground motions is very gradual in the distance range of 50 to 120 km, and only becomes steep
beyond 120 km. A profile of synthetic seismograms reproduces these features, and allows us to
understand why the attenuation relation has this shape. In both the recorded and synthetic
seismograms, the peak amplitudes inside 120 km are due to large postcritical reflections from the
Conrad and Moho discontinuities. These observations support the model for the attenuation of
strong ground motion proposed by Burger ef al. (1987) in which the shape of the attenuation curve
within 200 km of the source 1s controlled by focal depth and crustal structure. The distances over

which ground motion amplitudes are elevated by postcritical reflections generally lie in the overall
range of 50 to 200 km, with the specific distance range depending on the focal depth of the
earthquake and on the crustal structure. Because of the deep focal depth of the Saguenay earthquake,
the critical distances for these reflections were short, causing the ground motion amplitudes to be
elevated in the distance range of 50 to 120 km. The recorded ground motions were significantly

underpredicted by attenuation relations based on random process models which do not take account

of these effects.

INTRODUCTION

The November 25, 1988 Saguenay earthquake produced by far the largest set of strong motion
ecordings of any earthquake in eastern North America (Munro and North., 1988). These recordings
rovide an opportumty to test methods, presently based on a limited data set, for estimating strong
ons of eastern North American earthquakes. The Saguenay earthquake occurred within
e Province, close to the southern margin of the Saguenay Graben in southern Quebec
and about 100 km northwest of the St. Lawrence River. The earthquake occurred at 23:46:04.
GMT on November 25, 1988 at latitude 48.117°N, longitude 71.184°W (North et al., 1989). The
mechanism of the Saguenay earthquake was nearly pure thrust with a P axis oriented east-northeast,
consistent with that of the larger earthquakes in the northeastern United States and southeastern
Canada (Ebel ef al., 1986, Somerville et al., 1987). The Saguenay earthquake originated at a depth

of 29 km, which JS greater than the depth range of 5 to 15 km that is characteristic of the larger
Parthqualfes in eastern North America (Ebel et al., 1986; Somerville et al., 1987). The overall
source duration T of the earthquake of 1.8 seconds combined with a seismic moment M, of 5 X
1024 dyne-cm, corresponds to a stress drop Ao of approximately 160 bars. This 1s wnthm the
uncertainty of the median value of 120 bars obtained from thirteen previous eastern North American

events using the same methods (Somerville et al., 1987).
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recordings in the northeastern United States and adjacent Canada (Barker et al., 1989) lent suppor:
to the hypothesis that crustal structure and focal depth play an important role in determining i
shape of the strong ground motion attenuation curve. Using procedures similar to that of Burger

i

et al. (1987) and Barker et al. (1989), Gariel and Jacob (1989) and Ou and Herrmann (19
analyzed the attenuation of strong motion from the 1988 Saguenay earthquake and obtained resuls
similar to those of Somerville et a/. (1990a) which are summarized below.
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reflection, which controls peak amplitudes out to 200 km.

In summary, the recorded and synthetic profiles both demonstrate that at distances beyond
about 70 km, the direct shear wave arrival ceases to control peak ground motion amplitudes; instead,
peak amplitudes are controlled by post-critical reflections from the velocity gradients in the lower
crust. The strength of these postcritical reflections, and the distance ranges Over which they are
dominant, are controlled by the focal depth and crustal structure. Thus crustal structure and focal

depth control the attenuation of strong ground motion.

N OF STRONG GROUND MOTION

of the profiles of recorded and synthetic se1Smograms
attenuation of both the recorded and simulated

1] in the distance range of 50 to 120 km, and only becomes stéeep beyond
have already shown that the peak amplitudes in this flat

portion of the attenuation curve inside 120 km in both the data and the synthetic seismograms are
due to large postcritical reflections from the Conrad and Moho discontinuities. These reflections

become postcritical at close distances because of the depth of the source.

There is evidence that postcritical reflections from the lower crust also control peak ground

notion amplitudes in at least some regions of the western United States. Preliminary analysis of
accelerograms having abso ' ' tober 17. 1989 Loma Prieta

m (which includes San Francisco and

earthquake shows that 1n t !
1 e due to postcritical Moho reflections (Somerville

Oakland), the largest motions at a given station wer
and Yoshimura, 1990). These motions were further amplified, presumably by impedance contrast

~nd resonance effects, at soft soil sites. For both the Saguenay and Loma Prieta earthquakes, the
short critical distance and the consequent elevation of ground motion amplitudes on rock sites
between about 50 and 120 km are due to deep focal depth, or more precisely, to the proximity of

the source to the base of the lower crust.
r that the focal depth of the Saguenay earthquake and the

structure of the crust in which it occurred influenced the shape of the ground motion attenuation
~urve of this earthquake. Earthquakes occurring at other depths and in other crustal structures
are expected to have different attenuation curves. Attenuation Curves for eastern North America
that are based in part on empirical strong motion data represent the averaging of attenuation Curves
for a range of focal depths and a variety of different crustal structures. It is theretore 1O be
sxpected that the attenuation curve for the unusually deep Saguenay earthquake might differ from

these empirical attenuation cCurves.

ATTENUATIO

The peak velocities and accelerations

are compared in the lower part of Fig. 2. The

peak motions is very gradu
120 km. In the top part of Fig. 2, wWe

From the above analysis, it 1S cle

Several recent attenuation curves are based on random process theory (Hanks and McGuire,
1981; Bgore, 1983), in which strong ground motions are modeled as segments of band-limited noise.
In the simplest of these models, wave propagation effects are modeled by anelastic attenuation and
by a g?ometrical spreading term, assumed to be /R within 100 km (corresponding toO body wave
§preadmg in a whole-space), and 1 /R beyond 100 km (corresponding to surface wave spreading
in 2 half space). These effects produce a smooth, monotonically decreasing function of ground
motion amplitude with distance (Boore and Atkinson, 1987, Toro and McGuire, 1987). This simple
ground motion model does not include focal depth and crustal structure among its input parameters,

and so 1t does ‘not account for the influence of these parameters on the ground motion attenuation
curve. For this reason, it is expected that the attenuation curve for the unusually deep Saguenay

earthquake might differ from curves derived using simple random process theory.
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